Specifically, you may want to find 1 = sa + tb which is very useful in cryptography.
The Code
def extended_euclidean(a,b):
origa = a
origb = b
x = 0
lastx = 1
y = 1
lasty = 0
while b != 0:
q = a // b
a, b = b, a % b
full = "%d = (%d * %d + %d * %d) - %d * (%d * %d + %d * %d) " % ( b, origa, lastx, origb, lasty, q, origa, x, origb, y )
short = "%d = %d * %d + %d * %d" % ( b, origa, lastx - x * q, origb, lasty - y * q)
print("%s\t%s\t%s\t%s" % (a, b, full, short))
x, lastx = (lastx - q * x, x)
y, lasty = (lasty - q * y, y)
return (lastx, lasty)
The Output
Take the numbers 120 and 23:>>> extended_euclidean(120,23)
23 5 5 = (120 * 1 + 23 * 0) - 5 * (120 * 0 + 23 * 1) 5 = 120 * 1 + 23 * -5
5 3 3 = (120 * 0 + 23 * 1) - 4 * (120 * 1 + 23 * -5) 3 = 120 * -4 + 23 * 21
3 2 2 = (120 * 1 + 23 * -5) - 1 * (120 * -4 + 23 * 21) 2 = 120 * 5 + 23 * -26
2 1 1 = (120 * -4 + 23 * 21) - 1 * (120 * 5 + 23 * -26) 1 = 120 * -9 + 23 * 47
1 0 0 = (120 * 5 + 23 * -26) - 2 * (120 * -9 + 23 * 47) 0 = 120 * 23 + 23 * -120
(-9, 47)
No comments:
Post a Comment